Effect of glycaemic control and age on low-density lipoprotein susceptibility to oxidation in diabetes mellitus type 1.

نویسندگان

  • A Liguori
  • P Abete
  • J M Hayden
  • F Cacciatore
  • F Rengo
  • G Ambrosio
  • D Bonaduce
  • M Condorelli
  • P D Reaven
  • C Napoli
چکیده

BACKGROUND Although individuals with diabetes mellitus frequently have dyslipidaemias and high blood pressure, much of the increased risk for coronary heart disease is not explained by these and other classical risk factors. Thus, other less widely recognized risk factors, including increased susceptibility of low-density lipoprotein (LDL) to oxidation, might enhance vascular dysfunction and atherogenesis in diabetes. AIMS We compared both the rate and extent of LDL oxidation ex vivo between 78 poorly controlled individuals with type 1 diabetes and 78 age- and sex-matched non-diabetic controls. We then initiated intensive insulin therapy for 3 months to determine the impact of improved glucose control on LDL composition and oxidation. RESULTS Diabetic and non-diabetic individuals did not have significantly different body weights, dietary intake, blood pressure, renal function or plasma lipid levels. LDL composition was also similar in both groups. In contrast, vitamin E content in LDL was significantly lower in diabetic patients. Measures of LDL lipid oxidation, including conjugated diene, lipid peroxide and thiobarbituric acid reactive substances formation, as well as measures of LDL protein modification, were significantly greater in diabetic patients. Levels of hyperglycaemia correlated strongly with each measure of LDL lipid oxidation (r ranges from 0.60-0.81, P<0.05 for each correlation). After improved glucose control (average reduction in % Hb(Alc)of 5.5 units) all measures of LDL oxidation improved dramatically and approached values for non-diabetics. Absolute values of LDL oxidation increased among all categories of age in both diabetic and control individuals, and this relationship persisted even after adjustment for differences in glucose concentrations. CONCLUSIONS We demonstrate that hyperglycaemia has a potent but reversible effect on LDL oxidation and that age may independently enhance LDL susceptibility to oxidation. These pathophysiological effects may play an important role in determining vascular complications and atherogenesis in poorly controlled type 1 diabetic patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glucose Influence on Copper Ion-Dependent Oxidation of Low Density Lipoprotein

Background: It is well established that oxidative modification of low density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. We examined the in vitro effect of glucose on native and glycated LDL oxidation using copper ion dependent oxidation system. Methods: In this study, LDL was isolated from plasma...

متن کامل

Lipid Profiles and Lipid Oxidation in Type 2 Diabetic Patients with Good Glycemic Control

OBJECTIVE: The aim of this study was to evaluate the effect of good glycemic control on serum lipids levels and lipid peroxidation, and to find out the relationship between the level of malondialdehyde and HbA1c in type 2 diabetes. MATERIALS AND METHODS: Fifty type 2 diabetic patients aged 40-60 years with the history of diabetes for more than 10 years were studied. Glycemic control was stable...

متن کامل

Effect of Thyroid Hormone Levels on Glycemic Control: The Indian Context

Objective: Diabetes mellitus (DM) is known as the silent pandemic. It is hypothesized that other endocrine systems are affected by the metabolic changes occurring due to DM. We aimed to investigate the correlation of thyroid hormones with glycaemic and lipid parameters. Materials and Methods: 81 diabetic patients and 81 non-diabetic age and sex-matched healthy volunteers participated in the st...

متن کامل

The Effect of ? -Tocopherol on Copper Binding to Low Density Lipoprotein

The oxidative modification of low density lipoprotein (LDL) may play an important role in atherogenesis. Antioxidants that can prevent LDL oxidation may act as antiatherogens. Our understanding of the mechanism of LDL oxidation and factors that determine its susceptibility to oxidation is still incomplete. Copper is a candidate for oxidizing LDL in atherosclerotic lesions. The binding of copper...

متن کامل

Effect of Lycopene on Formation of Low Density Lipoprotein-Copper Complex in Copper Catalyzed Peroxidation of Low Density Lipoprotein, as in vitro Experiment

Background: A great deal of evidence has indicated that oxidatively modified LDL plays a critical role in the initiation and progression of atherosclerosis. Antioxidants that can prevent LDL oxidation may act as antiatherogens. Copper is a candidate for oxidizing LDL in atherosclerotic lesions. The binding of copper ions to LDL is usually thought to be a prerequisite for LDL oxidation by copper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European heart journal

دوره 22 22  شماره 

صفحات  -

تاریخ انتشار 2001